The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
2010 Mathematics Subject Classification: 05A15, 05E05, 05E10, 13A50, 15A72, 16R10, 16R30, 20G05
Let K be a field of any characteristic. Let the formal power series f(x1, ..., xd) = ∑ αnx1^n1 ··· xd^nd = ∑ m(λ)Sλ(x1, ..., xd), αn, m(λ) ∈ K, be a symmetric function decomposed as a series of Schur functions. When f is a rational function whose denominator is a product of binomials of the form 1−x1^a1 ··· xd^ad, we use a classical combinatorial method of Elliott of 1903
further developed...
Download Results (CSV)