Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On the structure of the set of higher order spreading models

Bünyamin SarıKonstantinos Tyros — 2014

Studia Mathematica

We generalize some results concerning the classical notion of a spreading model to spreading models of order ξ. Among other results, we prove that the set S M ξ w ( X ) of ξ-order spreading models of a Banach space X generated by subordinated weakly null ℱ-sequences endowed with the pre-partial order of domination is a semilattice. Moreover, if S M ξ w ( X ) contains an increasing sequence of length ω then it contains an increasing sequence of length ω₁. Finally, if S M ξ w ( X ) is uncountable, then it contains an antichain of size...

A density version of the Carlson–Simpson theorem

Pandelis DodosVassilis KanellopoulosKonstantinos Tyros — 2014

Journal of the European Mathematical Society

We prove a density version of the Carlson–Simpson Theorem. Specifically we show the following. For every integer k 2 and every set A of words over k satisfying lim sup n | A [ k ] n | / k n > 0 there exist a word c over k and a sequence ( w n ) of left variable words over k such that the set c { c w 0 ( a 0 ) . . . w n ( a n ) : n and a 0 , . . . , a n [ k ] } is contained in A . While the result is infinite-dimensional its proof is based on an appropriate finite and quantitative version, also obtained in the paper.

Page 1

Download Results (CSV)