We shall show several approximation theorems for the Hausdorff compactifications of metrizable spaces or locally compact Hausdorff spaces. It is shown that every compactification of the Euclidean n-space ℝⁿ is the supremum of some compactifications homeomorphic to a subspace of . Moreover, the following are equivalent for any connected locally compact Hausdorff space X:
(i) X has no two-point compactifications,
(ii) every compactification of X is the supremum of some compactifications whose remainder...
Let F = ind lim Fₙ be an infinite-dimensional LF-space with density dens F = τ ( ≥ ℵ ₀) such that some Fₙ is infinite-dimensional and dens Fₙ = τ. It is proved that every open subset of F is homeomorphic to the product of an ℓ₂(τ)-manifold and (hence the product of an open subset of ℓ₂(τ) and ). As a consequence, any two open sets in F are homeomorphic if they have the same homotopy type.
By Fin(X) (resp. ), we denote the hyperspace of all non-empty finite subsets of X (resp. consisting of at most k points) with the Vietoris topology. Let ℓ₂(τ) be the Hilbert space with weight τ and the linear span of the canonical orthonormal basis of ℓ₂(τ). It is shown that if or E is an absorbing set in ℓ₂(τ) for one of the absolute Borel classes and of weight ≤ τ (α > 0) then Fin(E) and each are homeomorphic to E. More generally, if X is a connected E-manifold then Fin(X) is homeomorphic...
Download Results (CSV)