Implicit difference inequalities corresponding to first-order partial differential functional equations.
Classical solutions of quasilinear functional differential equations are approximated with solutions of implicit difference schemes. Proofs of convergence of the difference methods are based on a comparison technique. Nonlinear estimates of the Perron type with respect to the functional variable for given functions are used. Numerical examples are given.
Nonlinear parabolic functional differential equations with initial boundary conditions of the Neumann type are considered. A general class of difference methods for the problem is constructed. Theorems on the convergence of difference schemes and error estimates of approximate solutions are presented. The proof of the stability of the difference functional problem is based on a comparison technique. Nonlinear estimates of the Perron type with respect to the functional variable for given functions...
Page 1