We consider measure-preserving diffeomorphisms of the torus with zero entropy. We prove that every ergodic -diffeomorphism with linear growth of the derivative is algebraically conjugate to a skew product of an irrational rotation on the circle and a circle -cocycle. We also show that for no positive β ≠ 1 does there exist an ergodic -diffeomorphism whose derivative has polynomial growth with degree β.
We study ergodicity of cylinder flows of the form
, ,
where is a measurable cocycle with zero integral. We show a new class of smooth ergodic cocycles. Let k be a natural number and let f be a function such that is piecewise absolutely continuous (but not continuous) with zero sum of jumps. We show that if the points of discontinuity of have some good properties, then is ergodic. Moreover, there exists such that if is a function with zero integral such that is of bounded variation...
We show that for a unitary operator U on , where X is a compact manifold of class , , and μ is a finite Borel measure on X, there exists a function that realizes the maximal spectral type of U.
We introduce a new equivalence relation between unitary operators on separable Hilbert spaces and discuss a possibility to have in each equivalence class a measure-preserving transformation.
We consider zero entropy -diffeomorphisms on compact connected -manifolds. We introduce the notion of polynomial growth of the derivative for such diffeomorphisms, and study it for diffeomorphisms which additionally preserve a smooth measure. We show that if a manifold M admits an ergodic diffeomorphism with polynomial growth of the derivative then there exists a smooth flow with no fixed point on M. Moreover, if dim M = 2, then necessarily M = ² and the diffeomorphism is -conjugate to a skew...
The aim of this paper is to study the relationships between the concepts of local near uniform smoothness and the properties H and H*.
Special flows over some locally rigid automorphisms and under L² ceiling functions satisfying a local L² Denjoy-Koksma type inequality are considered. Such flows are proved to be disjoint (in the sense of Furstenberg) from mixing flows and (under some stronger assumption) from weakly mixing flows for which the weak closure of the set of all instances consists of indecomposable Markov operators. As applications we prove that
∙ special flows built over ergodic interval exchange...
Using some moduli of convexity and smoothness we introduce a function which allows us to measure the deformation of Banach spaces. A few properties of this function are derived and its applicability in the geometric theory of Banach spaces is indicated.
The aim of this paper is to derive some relationships between the concepts of the property of strong introduced recently by Hong-Kun Xu and the so-called characteristic of near convexity defined by Goebel and Sȩkowski. Particularly we provide very simple proof of a result obtained by Hong-Kun Xu.
Download Results (CSV)