On Periodic Knots
Let L = X U Y be an oriented 2-component link in S. In this paper we will define two different types of polynomials which are ambient isotopic invariants of L. One is associated with a cyclic cover branched along one of their components, an the other is associated with a metabelian cover of L. This invariants are defined for any link unless the linking number lk(X,Y), is ±1.
We study distribution of the zeros of the Alexander polynomials of knots and links in S³. After a brief introduction of various stabilities of multivariate polynomials, we present recent results on stable Alexander polynomials.
Page 1