The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The normal cohomology functor is introduced from the category of all normal Hilbert modules over the ball algebra to the category of A(B)-modules. From the calculation of -groups, we show that every normal C(∂B)-extension of a normal Hilbert module (viewed as a Hilbert module over A(B) is normal projective and normal injective. It follows that there is a natural isomorphism between Hom of normal Shilov modules and that of their quotient modules, which is a new lifting theorem of normal Shilov...
Beurling's classical theorem gives a complete characterization of all invariant subspaces in the Hardy space H²(D). To generalize the theorem to higher dimensions, one is naturally led to determining the structure of each unitary equivalence (resp. similarity) class. This, in turn, requires finding podal (resp. s-podal) points in unitary (resp. similarity) orbits. In this note, we find that H-outer (resp. G-outer) functions play an important role in finding podal (resp. s-podal) points. By the methods...
Let M be a Beurling-type submodule of , the Hardy space over the unit ball of , and let be the associated quotient module. We completely describe the spectrum and essential spectrum of N, and related index theory.
We introduce a partial order relation in the Fock space. Applying it we show that for the quasi-invariant subspace [p] generated by a polynomial p with nonzero leading term, a quasi-invariant subspace M is similar to [p] if and only if there exists a polynomial q with the same leading term as p such that M = [q].
It is shown that in the Dirichlet space , two invariant subspaces ℳ ₁, ℳ ₂ of the Dirichlet shift are unitarily equivalent only if ℳ ₁ = ℳ ₂.
Download Results (CSV)