The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Nonlinear diffusion equations with perturbation terms on unbounded domains

Kurima, Shunsuke — 2017

Proceedings of Equadiff 14

This paper considers the initial-boundary value problem for the nonlinear diffusion equation with the perturbation term u t + ( - Δ + 1 ) β ( u ) + G ( u ) = g in Ω × ( 0 , T ) in an unbounded domain Ω N with smooth bounded boundary, where N , T > 0 , β , is a single-valued maximal monotone function on , e.g., β ( r ) = | r | q - 1 r ( q > 0 , q 1 ) and G is a function on which can be regarded as a Lipschitz continuous operator from ( H 1 ( Ω ) ) * to ( H 1 ( Ω ) ) * . The present work establishes existence and estimates for the above problem.

Boundedness and stabilization in a three-dimensional two-species chemotaxis-Navier-Stokes system

Hirata, MisakiKurima, ShunsukeMizukami, MasaakiYokota, Tomomi — 2017

Proceedings of Equadiff 14

This paper is concerned with the two-species chemotaxis-Navier–Stokes system with Lotka–Volterra competitive kinetics ( 1 ) t + u · 1 = 𝔻 1 - χ 1 · ( 1 c ) + μ 1 1 ( 1 - 1 - a 1 2 ) in × ( 0 , ) , ( 2 ) t + u · 2 = 𝔻 2 - χ 2 · ( 2 c ) + μ 2 2 ( 1 - a 2 1 - 2 ) in × ( 0 , ) , c t + u · c = 𝔻 c - ( α 1 + β 2 ) c in × ( 0 , ) , u t + ( u · ) u = 𝔻 u + P + ( γ 1 + 2 ) Φ , · u = 0 in × ( 0 , ) under homogeneous Neumann boundary conditions and initial conditions, where is a bounded domain in R3 with smooth boundary. Recently, in the 2-dimensional setting, global existence and stabilization of classical solutions to the above system were first established. However, the 3-dimensional case has not been studied: Because of difficulties in the Navier–Stokes system, we can...

Page 1

Download Results (CSV)