The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
This paper considers the initial-boundary value problem for the nonlinear diffusion equation with the perturbation term
in an unbounded domain with smooth bounded boundary, where , , , is a single-valued maximal monotone function on , e.g.,
and is a function on which can be regarded as a Lipschitz continuous operator from to . The present work establishes existence and estimates for the above problem.
This paper is concerned with the two-species chemotaxis-Navier–Stokes system with Lotka–Volterra competitive kinetics
under homogeneous Neumann boundary conditions and initial conditions, where is a bounded domain in R3 with smooth boundary. Recently, in the 2-dimensional setting, global existence and stabilization of classical solutions to the above system were first established. However, the 3-dimensional case has not been studied: Because of difficulties in the Navier–Stokes system, we can...
Download Results (CSV)