The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

On Monochromatic Subgraphs of Edge-Colored Complete Graphs

Eric AndrewsFutaba FujieKyle KolasinskiChira LumduanhomAdam Yusko — 2014

Discussiones Mathematicae Graph Theory

In a red-blue coloring of a nonempty graph, every edge is colored red or blue. If the resulting edge-colored graph contains a nonempty subgraph G without isolated vertices every edge of which is colored the same, then G is said to be monochromatic. For two nonempty graphs G and H without isolated vertices, the mono- chromatic Ramsey number mr(G,H) of G and H is the minimum integer n such that every red-blue coloring of Kn results in a monochromatic G or a monochromatic H. Thus, the standard Ramsey...

Hamiltonian-colored powers of strong digraphs

Garry JohnsRyan JonesKyle KolasinskiPing Zhang — 2012

Discussiones Mathematicae Graph Theory

For a strong oriented graph D of order n and diameter d and an integer k with 1 ≤ k ≤ d, the kth power D k of D is that digraph having vertex set V(D) with the property that (u, v) is an arc of D k if the directed distance d D ( u , v ) from u to v in D is at most k. For every strong digraph D of order n ≥ 2 and every integer k ≥ ⌈n/2⌉, the digraph D k is Hamiltonian and the lower bound ⌈n/2⌉ is sharp. The digraph D k is distance-colored if each arc (u, v) of D k is assigned the color i where i = d D ( u , v ) . The digraph D k is Hamiltonian-colored...

Vertex rainbow colorings of graphs

Futaba Fujie-OkamotoKyle KolasinskiJianwei LinPing Zhang — 2012

Discussiones Mathematicae Graph Theory

In a properly vertex-colored graph G, a path P is a rainbow path if no two vertices of P have the same color, except possibly the two end-vertices of P. If every two vertices of G are connected by a rainbow path, then G is vertex rainbow-connected. A proper vertex coloring of a connected graph G that results in a vertex rainbow-connected graph is a vertex rainbow coloring of G. The minimum number of colors needed in a vertex rainbow coloring of G is the vertex rainbow connection number vrc(G) of...

Page 1

Download Results (CSV)