Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Coefficient bounds for level 2 cusp forms

Paul JenkinsKyle Pratt — 2015

Acta Arithmetica

We give explicit upper bounds for the coefficients of arbitrary weight k, level 2 cusp forms, making Deligne’s well-known O ( n ( k - 1 ) / 2 + ϵ ) bound precise. We also derive asymptotic formulas and explicit upper bounds for the coefficients of certain level 2 modular functions.

Page 1

Download Results (CSV)