On the calculation of evolutionarily stable strategies.
Bounded lattices with an antitone involution the complemented elements of which do not form a sublattice must contain two complemented elements such that not both their join and their meet are complemented. We distinguish (up to symmetry) eight cases and in each of these cases we present such a lattice of minimal cardinality.
We show that every idempotent weakly divisible residuated lattice satisfying the double negation law can be transformed into an orthomodular lattice. The converse holds if adjointness is replaced by conditional adjointness. Moreover, we show that every positive right residuated lattice satisfying the double negation law and two further simple identities can be converted into an orthomodular lattice. In this case, also the converse statement is true and the corresponence is nearly one-to-one.
Certain ring-like structures, so-called orthorings, are introduced which are in a natural one-to-one correspondence with lattices with 0 every principal ideal of which is an ortholattice. This correspondence generalizes the well-known bijection between Boolean rings and Boolean algebras. It turns out that orthorings have nice congruence and ideal properties.
It is shown that in the variety of orthomodular lattices every hypersubstitution respecting all absorption laws either leaves the lattice operations unchanged or interchanges join and meet. Further, in a variety of lattices with an involutory antiautomorphism a semigroup generated by three involutory hypersubstitutions is described.
Brouwerian semilattices are meet-semilattices with 1 in which every element a has a relative pseudocomplement with respect to every element b, i. e. a greatest element c with a∧c ≤ b. Properties of classes of reflexive and compatible binary relations, especially of congruences of such algebras are described and an abstract characterization of congruence classes via ideals is obtained.
Ring-like operations are introduced in pseudocomplemented semilattices in such a way that in the case of Boolean pseudocomplemented semilattices one obtains the corresponding Boolean ring operations. Properties of these ring-like operations are derived and a characterization of Boolean pseudocomplemented semilattices in terms of these operations is given. Finally, ideals in the ring-like structures are defined and characterized.
A variety is called normal if no laws of the form are valid in it where is a variable and is not a variable. Let denote the lattice of all varieties of monounary algebras and let be a non-trivial non-normal element of . Then is of the form with some . It is shown that the smallest normal variety containing is contained in for every where denotes the operator of forming choice algebras. Moreover, it is proved that the sublattice of consisting of all normal elements of...
Relational systems containing one binary relation are investigated. Quotient relational systems are introduced and some of their properties are characterized. Moreover, homomorphisms, strong mappings and cone preserving mappings are introduced and the interplay between these notions is considered. Finally, the connection between directed relational systems and corresponding groupoids is investigated.
It is proved that orthomodular posets are in a natural one-to-one correspondence with certain residuated structures.
The paper deals with orthomodular lattices which are so-called horizontal sums of Boolean algebras. It is elementary that every such orthomodular lattice is simple and its blocks are just these Boolean algebras. Hence, the commutativity relation plays a key role and enables us to classify these orthomodular lattices. Moreover, this relation is closely related to the binary commutator which is a term function. Using the class of horizontal sums of Boolean algebras, we establish an identity which...
By a relational system we mean a couple where is a set and is a binary relation on , i.e. . To every directed relational system we assign a groupoid on the same base set where if and only if . We characterize basic properties of by means of identities satisfied by and show how homomorphisms between those groupoids are related to certain homomorphisms of relational systems.
Page 1 Next