We deal with the representation of locally convex algebras. On one hand as subalgebras of some weighted space CV(X) and on the other hand, in the case of uniformly A-convex algebras, as inductive limits of Banach algebras. We also study some questions on the spectrum of a locally convex algebra.
We deal with the space of Λ-summable sequences from a locally convex space E, where Λ is a metrizable perfect sequence space. We give a characterization of the reflexivity of Λ(E) in terms of that of Λ and E and the AK property. In particular, we prove that if Λ is an echelon sequence space and E is a Fréchet space then Λ(E) is reflexive if and only if Λ and E are reflexive.
Download Results (CSV)