The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

On the limiting empirical measure of eigenvalues of the sum of rank one matrices with log-concave distribution

A. PajorL. Pastur — 2009

Studia Mathematica

We consider n × n real symmetric and hermitian random matrices Hₙ that are sums of a non-random matrix H ( 0 ) and of mₙ rank-one matrices determined by i.i.d. isotropic random vectors with log-concave probability law and real amplitudes. This is an analog of the setting of Marchenko and Pastur [Mat. Sb. 72 (1967)]. We prove that if mₙ/n → c ∈ [0,∞) as n → ∞, and the distribution of eigenvalues of H ( 0 ) and the distribution of amplitudes converge weakly, then the distribution of eigenvalues of Hₙ converges...

Page 1

Download Results (CSV)