Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Derivability, variation and range of a vector measure

L. Rodríguez-Piazza — 1995

Studia Mathematica

We prove that the range of a vector measure determines the σ-finiteness of its variation and the derivability of the measure. Let F and G be two countably additive measures with values in a Banach space such that the closed convex hull of the range of F is a translate of the closed convex hull of the range of G; then F has a σ-finite variation if and only if G does, and F has a Bochner derivative with respect to its variation if and only if G does. This complements a result of [Ro] where we proved...

Conical measures and properties of a vector measure determined by its range

L. Rodríguez-PiazzaM. Romero-Moreno — 1997

Studia Mathematica

We characterize some properties of a vector measure in terms of its associated Kluvánek conical measure. These characterizations are used to prove that the range of a vector measure determines these properties. So we give new proofs of the fact that the range determines the total variation, the σ-finiteness of the variation and the Bochner derivability, and we show that it also determines the (p,q)-summing and p-nuclear norm of the integration operator. Finally, we show that Pettis derivability...

Compactness of the integration operator associated with a vector measure

S. OkadaW. J. RickerL. Rodríguez-Piazza — 2002

Studia Mathematica

A characterization is given of those Banach-space-valued vector measures m with finite variation whose associated integration operator Iₘ: f ↦ ∫fdm is compact as a linear map from L¹(m) into the Banach space. Moreover, in every infinite-dimensional Banach space there exist nontrivial vector measures m (with finite variation) such that Iₘ is compact, and other m (still with finite variation) such that Iₘ is not compact. If m has infinite variation, then Iₘ is never compact.

Page 1

Download Results (CSV)