The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

On the distribution function of the majorant of ergodic means

Lasha Epremidze — 1992

Studia Mathematica

Let T be a measure-preserving ergodic transformation of a measure space (X,,μ) and, for f ∈ L(X), let f * = s u p N 1 / N m = 0 N - 1 f T m . In this paper we mainly investigate the question of whether (i) ʃ a | μ ( f * > t ) - 1 / t ʃ ( f * > t ) f d μ | d t < and whether (ii) ʃ a | μ ( f * > t ) - 1 / t ʃ ( f > t ) f d μ | d t < for some a > 0. It is proved that (i) holds for every f ≥ 0. (ii) holds if f ≥ 0 and f log log (f + 3) ∈ L(X) or if μ(X) = 1 and the random variables f T m are independent. Related inequalities are proved. Some examples and counterexamples are constructed. Several known results are obtained as corollaries.

Page 1

Download Results (CSV)