The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

k-Kernels and some operations in digraphs

Hortensia Galeana-SanchezLaura Pastrana — 2009

Discussiones Mathematicae Graph Theory

Let D be a digraph. V(D) denotes the set of vertices of D; a set N ⊆ V(D) is said to be a k-kernel of D if it satisfies the following two conditions: for every pair of different vertices u,v ∈ N it holds that every directed path between them has length at least k and for every vertex x ∈ V(D)-N there is a vertex y ∈ N such that there is an xy-directed path of length at most k-1. In this paper, we consider some operations on digraphs and prove the existence of k-kernels in digraphs formed by these...

Kernels in monochromatic path digraphs

Hortensia Galeana-SánchezLaura Pastrana RamírezHugo Alberto Rincón Mejía — 2005

Discussiones Mathematicae Graph Theory

We call the digraph D an m-coloured digraph if its arcs are coloured with m colours. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike. Let D be an m-coloured digraph. A set N ⊆ V(D) is said to be a kernel by monochromatic paths if it satisfies the following two conditions: (i) for every pair of different vertices u,v ∈ N there is no monochromatic directed path between them and (ii) for each vertex x ∈ (V(D)-N) there...

Page 1

Download Results (CSV)