On finite subgroups of groups of type VF.
To a commutative ring K, and a family of K-algebras indexed by the vertex set of a graph, we associate a K-algebra obtained by a mixture of coproduct and tensor product constructions. For this, and related constructions, we give exact sequences and deduce homological properties.
We give homological conditions on groups such that whenever the conditions hold for a group G, there is a bound on the orders of finite subgroups of G. This extends a result of P. H. Kropholler. We also suggest a weaker condition under which the same conclusion might hold.
Page 1