The paper contains a fixed point theorem for stable mappings in metric discus spaces (Theorem 10). A consequence is Theorem 11 which is a far-reaching extension of the fundamental result of Browder, Göhde and Kirk for non-expansive mappings.
The notion of a metric bead space was introduced in the preceding paper (L. Pasicki: Bead spaces and fixed point theorems, Topology Appl., vol. 156 (2009), 1811–1816) and it was proved there that every bounded set in such a space (provided the space is complete) has a unique central point. The bead spaces themselves can be considered in particular as natural extensions of convex sets in uniformly convex spaces. It appears that normed bead spaces are identical with uniformly convex spaces. On the...
Download Results (CSV)