The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We introduce a new variational method for the numerical homogenization of divergence form elliptic, parabolic and hyperbolic equations with arbitrary rough (
) coefficients. Our method does not rely on concepts of ergodicity or scale-separation but on compactness properties of the solution space and a new variational approach to homogenization. The approximation space is generated by an interpolation basis (over scattered points forming a mesh of resolution ) minimizing the
...
For a subset S of edges in a connected graph G, S is a k-restricted edge cut if G − S is disconnected and every component of G − S has at least k vertices. The k-restricted edge connectivity of G, denoted by λk(G), is defined as the cardinality of a minimum k-restricted edge cut. Let ξk(G) = min|[X, X̄]| : |X| = k, G[X] is connected, where X̄ = V (G). A graph G is super k-restricted edge connected if every minimum k-restricted edge cut of G isolates a component of order exactly k. Let k be a positive...
Download Results (CSV)