Signed Total Roman Edge Domination In Graphs
Let G = (V,E) be a simple graph with vertex set V and edge set E. A signed total Roman edge dominating function of G is a function f : Ʃ → {−1, 1, 2} satisfying the conditions that (i) Ʃe′∈N(e) f(e′) ≥ 1 for each e ∈ E, where N(e) is the open neighborhood of e, and (ii) every edge e for which f(e) = −1 is adjacent to at least one edge e′ for which f(e′) = 2. The weight of a signed total Roman edge dominating function f is !(f) = Ʃe∈E f(e). The signed total Roman edge domination number y′stR(G) of...