The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

An Intracellular Delay-Differential Equation Model of the HIV Infection and Immune Control

T. DumrongpokaphanY. LenburyR. OuncharoenY. Xu — 2010

Mathematical Modelling of Natural Phenomena

Previous work has shown that intracellular delay needs to be taken into account to accurately determine the half-life of free virus from drug perturbation experiments [1]. The delay also effects the estimated value for the infected T-cell loss rate when we assume that the drug is not completely effective [19]. Models of virus infection that include intracellular delay are more accurate representations of the biological data.
We analyze a non-linear model of the human immunodeficiency virus (HIV)...

Page 1

Download Results (CSV)