Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

The Minimum Spectral Radius of Signless Laplacian of Graphs with a Given Clique Number

Li SuHong-Hai LiJing Zhang — 2014

Discussiones Mathematicae Graph Theory

In this paper we observe that the minimal signless Laplacian spectral radius is obtained uniquely at the kite graph PKn−ω,ω among all connected graphs with n vertices and clique number ω. In addition, we show that the spectral radius μ of PKm,ω (m ≥ 1) satisfies [...] More precisely, for m > 1, μ satisfies the equation [...] where [...] and [...] . At last the spectral radius μ(PK∞,ω) of the infinite graph PK∞,ω is also discussed.

On The Determinant of q-Distance Matrix of a Graph

Hong-Hai LiLi SuJing Zhang — 2014

Discussiones Mathematicae Graph Theory

In this note, we show how the determinant of the q-distance matrix Dq(T) of a weighted directed graph G can be expressed in terms of the corresponding determinants for the blocks of G, and thus generalize the results obtained by Graham et al. [R.L. Graham, A.J. Hoffman and H. Hosoya, On the distance matrix of a directed graph, J. Graph Theory 1 (1977) 85-88]. Further, by means of the result, we determine the determinant of the q-distance matrix of the graph obtained from a connected weighted graph...

The Laplacian spectrum of some digraphs obtained from the wheel

Li SuHong-Hai LiLiu-Rong Zheng — 2012

Discussiones Mathematicae Graph Theory

The problem of distinguishing, in terms of graph topology, digraphs with real and partially non-real Laplacian spectra is important for applications. Motivated by the question posed in [R. Agaev, P. Chebotarev, Which digraphs with rings structure are essentially cyclic?, Adv. in Appl. Math. 45 (2010), 232-251], in this paper we completely list the Laplacian eigenvalues of some digraphs obtained from the wheel digraph by deleting some arcs.

Page 1

Download Results (CSV)