Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

On the attractors of Feigenbaum maps

Guifeng HuangLidong Wang — 2014

Annales Polonici Mathematici

A solution of the Feigenbaum functional equation is called a Feigenbaum map. We investigate the likely limit set (i.e. the maximal attractor in the sense of Milnor) of a non-unimodal Feigenbaum map, prove that it is a minimal set that attracts almost all points, and then estimate its Hausdorff dimension. Finally, for every s ∈ (0,1), we construct a non-unimodal Feigenbaum map with a likely limit set whose Hausdorff dimension is s.

Recurrent point set of the shift on Σ and strong chaos

Lidong WangGongfu LiaoYu Yang — 2002

Annales Polonici Mathematici

Let (Σ,ϱ) be the one-sided symbolic space (with two symbols), and let σ be the shift on Σ. We use A(·), R(·) to denote the set of almost periodic points and the set of recurrent points respectively. In this paper, we prove that the one-sided shift is strongly chaotic (in the sense of Schweizer-Smítal) and there is a strongly chaotic set 𝒥 satisfying 𝒥 ⊂ R(σ)-A(σ).

The set of recurrent points of a continuous self-map on compact metric spaces and strong chaos

Lidong WangGongfu LiaoZhizhi ChenXiaodong Duan — 2003

Annales Polonici Mathematici

We discuss the existence of an uncountable strongly chaotic set of a continuous self-map on a compact metric space. It is proved that if a continuous self-map on a compact metric space has a regular shift invariant set then it has an uncountable strongly chaotic set in which each point is recurrent, but is not almost periodic.

Distributional chaos of time-varying discrete dynamical systems

Lidong WangYingnan LiYuelin GaoHeng Liu — 2013

Annales Polonici Mathematici

This paper is concerned with distributional chaos of time-varying discrete systems in metric spaces. Some basic concepts are introduced for general time-varying systems, including sequentially distributive chaos, weak mixing, and mixing. We give an example of sequentially distributive chaos of finite-dimensional linear time-varying dynamical systems, which is not distributively chaotic of type i (DCi for short, i = 1, 2). We also prove that two uniformly topological equiconjugate time-varying systems...

Page 1

Download Results (CSV)