A note on subparacompact spaces.
We first introduce a notion of (a,b,c,d)-orthogonality in a normed linear space, which is a natural generalization of the classical isosceles and Pythagorean orthogonalities, and well known α- and (α,β)-orthogonalities. Then we characterize inner product spaces in several ways, among others, in terms of one orthogonality implying another orthogonality.
In this paper we prove two results. The first is an extension of the result of G. D. Jones [4]: (A) Every nontrivial solution for must be unbounded, provided , in and for every bounded subset , is bounded in . (B) Every bounded solution for , in , must be constant, provided in and for every bounded subset , is bounded in .
Page 1