On longest paths in connected graphs
A caterpillar is a tree with the property that the vertices of degree at least 2 induce a path. We show that for every graph G of order n, either G or G̅ has a spanning caterpillar of diameter at most 2 log n. Furthermore, we show that if G is a graph of diameter 2 (diameter 3), then G contains a spanning caterpillar of diameter at most (at most n).
Let G be a connected graph and let c:V(G) → 1,2,...,k be a coloring of the vertices of G for some positive integer k (where adjacent vertices may be colored the same). The color code of a vertex v of G (with respect to c) is the ordered (k+1)-tuple code(v) = (a₀,a₁,...,aₖ) where a₀ is the color assigned to v and for 1 ≤ i ≤ k, is the number of vertices adjacent to v that are colored i. The coloring c is called recognizable if distinct vertices have distinct color codes and the recognition number...
A collection (1 ≤ t ≤ k) of t disjoint paths, s of them being singletons with |V(L)| = k is called a (k,t,s)-linear forest. A graph G is (k,t,s)-ordered if for every (k,t,s)-linear forest L in G there exists a cycle C in G that contains the paths of L in the designated order as subpaths. If the cycle is also a hamiltonian cycle, then G is said to be (k,t,s)-ordered hamiltonian. We give sharp sum of degree conditions for nonadjacent vertices that imply a graph is (k,t,s)-ordered hamiltonian.
Page 1