The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Spanning caterpillars with bounded diameter

Ralph FaudreeRonald GouldMichael JacobsonLinda Lesniak — 1995

Discussiones Mathematicae Graph Theory

A caterpillar is a tree with the property that the vertices of degree at least 2 induce a path. We show that for every graph G of order n, either G or G̅ has a spanning caterpillar of diameter at most 2 log n. Furthermore, we show that if G is a graph of diameter 2 (diameter 3), then G contains a spanning caterpillar of diameter at most c n 3 / 4 (at most n).

Recognizable colorings of graphs

Gary ChartrandLinda LesniakDonald W. VanderJagtPing Zhang — 2008

Discussiones Mathematicae Graph Theory

Let G be a connected graph and let c:V(G) → 1,2,...,k be a coloring of the vertices of G for some positive integer k (where adjacent vertices may be colored the same). The color code of a vertex v of G (with respect to c) is the ordered (k+1)-tuple code(v) = (a₀,a₁,...,aₖ) where a₀ is the color assigned to v and for 1 ≤ i ≤ k, a i is the number of vertices adjacent to v that are colored i. The coloring c is called recognizable if distinct vertices have distinct color codes and the recognition number...

Linear forests and ordered cycles

Guantao ChenRalph J. FaudreeRonald J. GouldMichael S. JacobsonLinda LesniakFlorian Pfender — 2004

Discussiones Mathematicae Graph Theory

A collection L = P ¹ P ² . . . P t (1 ≤ t ≤ k) of t disjoint paths, s of them being singletons with |V(L)| = k is called a (k,t,s)-linear forest. A graph G is (k,t,s)-ordered if for every (k,t,s)-linear forest L in G there exists a cycle C in G that contains the paths of L in the designated order as subpaths. If the cycle is also a hamiltonian cycle, then G is said to be (k,t,s)-ordered hamiltonian. We give sharp sum of degree conditions for nonadjacent vertices that imply a graph is (k,t,s)-ordered hamiltonian.

Page 1

Download Results (CSV)