The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let ℝ be the real line and let Homeo₊(ℝ) be the orientation preserving homeomorphism group of ℝ. Then a subgroup G of Homeo₊(ℝ) is called tightly transitive if there is some point x ∈ X such that the orbit Gx is dense in X and no subgroups H of G with |G:H| = ∞ have this property. In this paper, for each integer n > 1, we determine all the topological conjugation classes of tightly transitive subgroups G of Homeo₊(ℝ) which are isomorphic to ℤⁿ and have countably many nontransitive points.
Let ϕ:G → Homeo₊(ℝ) be an orientation preserving action of a discrete solvable group G on ℝ. In this paper, the topological transitivity of ϕ is investigated. In particular, the relations between the dynamical complexity of G and the algebraic structure of G are considered.
Download Results (CSV)