Banach spaces whose bounded sets are bounding in the bidual.
Let be the Banach space of all bounded and continuous functions on the closed unit ball of a complex Banach space X and holomorphic on the open unit ball, with sup norm, and let be the subspace of of those functions which are uniformly continuous on . A subset is a boundary for if for every . We prove that for X = d(w,1) (the Lorentz sequence space) and X = C₁(H), the trace class operators, there is a minimal closed boundary for . On the other hand, for X = , the Schreier space,...
Page 1