Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Shilov boundary for holomorphic functions on some classical Banach spaces

María D. AcostaMary Lilian Lourenço — 2007

Studia Mathematica

Let ( B X ) be the Banach space of all bounded and continuous functions on the closed unit ball B X of a complex Banach space X and holomorphic on the open unit ball, with sup norm, and let u ( B X ) be the subspace of ( B X ) of those functions which are uniformly continuous on B X . A subset B B X is a boundary for ( B X ) if f = s u p x B | f ( x ) | for every f ( B X ) . We prove that for X = d(w,1) (the Lorentz sequence space) and X = C₁(H), the trace class operators, there is a minimal closed boundary for ( B X ) . On the other hand, for X = , the Schreier space,...

Page 1

Download Results (CSV)