The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We propose a general approach for the numerical approximation of optimal control problems governed by a linear advection–diffusion equation, based on a stabilization method applied to the lagrangian functional, rather than stabilizing the state and adjoint equations separately. This approach yields a coherently stabilized control problem. Besides, it allows a straightforward a posteriori error estimate in which estimates of higher order terms are needless. Our a posteriori estimates stems from splitting...
We propose a general approach for the numerical approximation of
optimal control problems governed by a linear advection–diffusion
equation, based on a stabilization method applied to the
Lagrangian functional, rather than stabilizing the state and
adjoint equations separately. This approach yields a coherently
stabilized control problem. Besides, it allows a straightforward
error estimate in which estimates of higher order terms
are needless. Our a posteriori estimates stems from splitting the
error...
Download Results (CSV)