The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
On the unit disk we study the Moser-Trudinger functional and its restrictions , where for . We prove that if a sequence of positive critical points of (for some ) blows up as , then , and weakly in and strongly in . Using this fact we also prove that when is large enough, then has no positive critical point, complementing previous existence results by Carleson-Chang, M. Struwe and Lamm-Robert-Struwe.
Download Results (CSV)