The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A graph is diameter-2-critical if its diameter is two and the deletion of any edge increases the diameter. Let G be a diameter-2-critical graph of order n. Murty and Simon conjectured that the number of edges in G is at most ⌊n 2/4⌋ and that the extremal graphs are the complete bipartite graphs K ⌊n/2⌋,⌊n/2⌉. Fan [Discrete Math. 67 (1987), 235–240] proved the conjecture for n ≤ 24 and for n = 26, while Füredi [J. Graph Theory 16 (1992), 81–98] proved the conjecture for n > n 0 where n 0 is a...
Denote the total domination number of a graph G by γₜ(G). A graph G is said to be total domination edge critical, or simply γₜ-critical, if γₜ(G+e) < γₜ(G) for each edge e ∈ E(G̅). For 3ₜ-critical graphs G, that is, γₜ-critical graphs with γₜ(G) = 3, the diameter of G is either 2 or 3. We characterise the 3ₜ-critical graphs G with diam G = 3.
Let G = (V,E) be a graph. A set S ⊆ V is a restrained dominating set if every vertex in V-S is adjacent to a vertex in S and to a vertex in V-S. The restrained domination number of G, denoted by , is the minimum cardinality of a restrained dominating set of G. A unicyclic graph is a connected graph that contains precisely one cycle. We show that if U is a unicyclic graph of order n, then , and provide a characterization of graphs achieving this bound.
A set S of vertices of a graph G = (V,E) is a dominating set if every vertex of V-S is adjacent to some vertex in S. The domination number γ(G) is the minimum cardinality of a dominating set of G, and the domination subdivision number is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the domination number. Arumugam conjectured that for any graph G. We give a counterexample to this conjecture. On the other hand, we show...
Download Results (CSV)