The garden of quantum spheres
A list of known quantum spheres of dimension one, two and three is presented.
A list of known quantum spheres of dimension one, two and three is presented.
Using principles of quantum symmetries we derive the algebraic part of the real spectral triple data for the standard Podleś quantum sphere: equivariant representation, chiral grading γ, reality structure J and the Dirac operator D, which has bounded commutators with the elements of the algebra and satisfies the first order condition.
Within the framework of free actions of compact quantum groups on unital C*-algebras, we propose two conjectures. The first one states that, if is a free coaction of the C*-algebra H of a non-trivial compact quantum group on a unital C*-algebra A, then there is no H-equivariant *-homomorphism from A to the equivariant join C*-algebra . For A being the C*-algebra of continuous functions on a sphere with the antipodal coaction of the C*-algebra of functions on ℤ/2ℤ, we recover the celebrated Borsuk-Ulam...
In this overview, we study how to reduce the index pairing for a fibre-product C*-algebra to the index pairing for the C*-algebra over which the fibre product is taken. As an example we analyze the case of suspensions and apply it to noncommutative instanton bundles of arbitrary charges over the suspension of quantum deformations of the 3-sphere.
Page 1