The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A is the intersection graph of a family of unit disks in the plane. If the disks do not overlap, it is also a or . It is known that finding a maximum independent set in a unit disk graph is a NP-hard problem. In this work we extend this result to penny graphs. Furthermore, we prove that finding a minimum clique partition in a penny graph is also NP-hard, and present two linear-time approximation algorithms for the computation of clique partitions: a -approximation algorithm for unit disk graphs...
A is the intersection graph
of a family of unit disks in the plane.
If the disks do not overlap, it is also a or .
It is known that finding a maximum independent set
in a unit disk graph is a NP-hard problem.
In this work we extend this result to penny graphs.
Furthermore, we prove that finding a minimum clique partition
in a penny graph is also NP-hard, and present
two linear-time approximation algorithms for the computation of clique partitions:
a -approximation algorithm for unit disk graphs
and...
Download Results (CSV)