Null-control and measurable sets
We prove the interior and boundary null-controllability of some parabolic evolutions with controls acting over measurable sets.
We prove the interior and boundary null-controllability of some parabolic evolutions with controls acting over measurable sets.
We prove the interior null-controllability of one-dimensional parabolic equations with time independent measurable coefficients.
We show that a harmonic function which vanishes continuously on an open set of the boundary of a convex domain cannot have a normal derivative which vanishes on a subset of positive surface measure. We also prove a similar result for caloric functions vanishing on the lateral boundary of a convex cylinder.
This paper presents two observability inequalities for the heat equation over . In the first one, the observation is from a subset of positive measure in , while in the second, the observation is from a subset of positive surface measure on . It also proves the Lebeau-Robbiano spectral inequality when is a bounded Lipschitz and locally star-shaped domain. Some applications for the above-mentioned observability inequalities are provided.
We prove the logarithmic convexity of certain quantities, which measure the quadratic exponential decay at infinity and within two characteristic hyperplanes of solutions of Schrödinger evolutions. As a consequence we obtain some uniqueness results that generalize (a weak form of) Hardy’s version of the uncertainty principle. We also obtain corresponding results for heat evolutions.
Page 1