The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Harmonic analysis in value at risk calculations.

Claudio AlbaneseLuis Seco — 2001

Revista Matemática Iberoamericana

Value at Risk is a measure of risk exposure of a portfolio and is defined as the maximum possible loss in a certain time frame, typically 1-20 days, and within a certain confidence, typically 95%. Full valuation of a portfolio under a large number of scenarios is a lengthy process. To speed it up, one can make use of the total delta vector and the total gamma matrix of a portfolio and compute a Gaussian integral over a region bounded by a quadric. We use methods from harmonic analysis to find approximate...

The spin of the ground state of an atom.

Charles L. FeffermanLuis A. Seco — 1996

Revista Matemática Iberoamericana

In this paper we address a question posed by M. and T. Hoffmann-Ostenhof, which concerns the total spin of the ground state of an atom or molecule. Each electron is given a value for spin, ±1/2. The total spin is the sum of the individual spins.

Aperiodicity of the Hamiltonian flow in the Thomas-Fermi potential.

Charles L. FeffermanLuis A. Seco — 1993

Revista Matemática Iberoamericana

In [FS1] we announced a precise asymptotic formula for the ground-state energy of a non-relativistic atom. The purpose of this paper is to establish an elementary inequality that plays a crucial role in our proof of that formula. The inequality concerns the Thomas-Fermi potential VTF = -y(ar) / r, a > 0, where y(r) is defined as the solution of ⎧   y''(x) = x-1/2y3/2(x), ⎨   y(0) =...

Page 1

Download Results (CSV)