The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove the maximum principle for a discontinuous Galerkin (DG) method applied to the numerical solution of traffic flow problems on networks described by the Lighthill-Whitham-Richards equations. The paper is a followup of the preceding paper, Part I, where stability of the scheme is analyzed. At traffic junctions, we consider numerical fluxes based on Godunov’s flux derived in our previous work. We also construct a new Godunov-like numerical flux taking into account right of way at the junction...
We study the stability of a discontinuous Galerkin (DG) method applied to the numerical solution of traffic flow problems on networks. We discretize the Lighthill-Whitham-Richards equations on each road by DG. At traffic junctions, we consider two types of numerical fluxes that are based on Godunov’s numerical flux derived in a previous work of ours. These fluxes are easily constructible for any number of incoming and outgoing roads, respecting the drivers’ preferences. The analysis is split into...
We deal with the simulation of traffic flow on networks. On individual roads we use standard macroscopic traffic models. The discontinuous Galerkin method in space and explicit Euler method in time is used for the numerical solution. We apply limiters to keep the density in an admissible interval as well as prevent spurious oscillations in the numerical solution. To solve traffic networks, we construct suitable numerical fluxes at junctions. Numerical experiments are presented.
We describe a numerical technique for the solution of macroscopic traffic flow models on networks of roads. On individual roads, we consider the standard Lighthill-Whitham-Richards model which is discretized using the discontinuous Galerkin method along with suitable limiters. In order to solve traffic flows on networks, we construct suitable numerical fluxes at junctions based on preferences of the drivers. Numerical experiment comparing different approaches is presented.
Download Results (CSV)