Complex Hadamard matrices and the spectral set conjecture.
By analyzing the connection between complex Hadamard matrices and spectral sets, we prove the direction "spectral ⇒ tile" of the Spectral Set Conjecture, for all sets A of size |A| ≤ 5, in any finite Abelian group. This result is then extended to the infinite grid Z for any dimension d, and finally to R.