The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let X be a Banach space and Y a closed subspace. We obtain simple geometric characterizations of Phelps' property U for Y in X (that every continuous linear functional g ∈ Y* has a unique norm-preserving extension f ∈ X*), which do not use the dual space X*. This enables us to give an intrinsic geometric characterization of preduals of strictly convex spaces close to the Beauzamy-Maurey-Lima-Uttersrud criterion of smoothness. This also enables us to prove that the U-property of the subspace K(E,F)...
Let X and Y be Banach spaces. We give a “non-separable” proof of the Kalton-Werner-Lima-Oja theorem that the subspace (X,X) of compact operators forms an M-ideal in the space (X,X) of all continuous linear operators from X to X if and only if X has Kalton’s property (M*) and the metric compact approximation property. Our proof is a quick consequence of two main results. First, we describe how Johnson’s projection P on (X,Y)* applies to f ∈ (X,Y)* when f is represented via a Borel (with respect to...
Download Results (CSV)