The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider the functional equation where is a given increasing homeomorphism of an open interval and is an unknown continuous function. In a series of papers by P. Kahlig and J. Smítal it was proved that the range of any non-constant solution is an interval whose end-points are fixed under and which contains in its interior no fixed point except for . They also provide a characterization of the class of monotone solutions and prove a necessary and sufficient condition for any solution...
We consider the functional equation where is a given homeomorphism of an open interval and is an unknown continuous function. A characterization of the class of continuous solutions is given in a series of papers by Kahlig and Smítal 1998–2002, and in a recent paper by Reich et al. 2004, in the case when is increasing. In the present paper we solve the converse problem, for which continuous maps , where is an interval, there is an increasing homeomorphism of such that . We...
Download Results (CSV)