Using the methods of differential subordination and superordination, sufficient conditions are determined on the differential linear operator of meromorphic functions in the punctured unit disk to obtain, respectively, the best dominant and the best subordinant. New sandwich-type results are also obtained.
Let A denote the class of analytic functions with the normalization f(0) = f'(0) - 1 = 0 in the open unit disc U = {z : |z| < 1}. Set [...] and define ∞nλ, μ in terms of the Hadamard product [...] . In this paper, we introduce several subclasses of analytic functions defined by means of the operator Inλ, μ A → A, given by [...] . Inclusion properties of these classes and the classes involving the generalized Libera integral operator are also considered.
In this investigation, we obtain some applications of first order differential subordination and superordination results involving Dziok-Srivastava operator and other linear operators for certain normalized analytic functions. Some of our results improve previous results.
Using the methods of differential subordination and superordination, sufficient conditions are determined on the differential linear operator of meromorphic functions in the punctured unit disk to obtain, respectively, the best dominant and the best subordinant. New sandwich-type results are also obtained.
In this paper, we obtain the Fekete-Szego inequalities for the functions of complex order defined by convolution. Also, we find upper bounds for the second Hankel determinant for functions belonging to the class .
Download Results (CSV)