Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Gebelein's inequality and its consequences

M. BeśkaZ. Ciesielski — 2006

Banach Center Publications

Let ( X i , i = 1 , 2 , . . . ) be the normalized gaussian system such that X i N ( 0 , 1 ) , i = 1,2,... and let the correlation matrix ρ i j = E ( X i X j ) satisfy the following hypothesis: C = s u p i 1 j = 1 | ρ i , j | < . We present Gebelein’s inequality and some of its consequences: Borel-Cantelli type lemma, iterated log law, Levy’s norm for the gaussian sequence etc. The main result is that (f(X₁) + ⋯ + f(Xₙ))/n → 0 a.s. for f ∈ L¹(ν) with (f,1)ν = 0.

Page 1

Download Results (CSV)