We have shown a model of fuzzy neural network that is able to infer the relations associated to the transitions of a fuzzy automaton from a fuzzy examples set. Neural network is trained by a backpropagation of error based in a smooth derivative [1]. Once network has been trained the fuzzy relations associated to the transitions of the automaton are found encoded in the weights.
Theoretical and experimental studies have shown that traditional training algorithms for Dynamical Recurrent Neural Networks may suffer of local optima solutions, due to the error propagation across the recurrence. In the last years, many researchers have put forward different approaches to solve this problem, most of them being based on heuristic procedures. In this paper, the training capabilities of evolutionary techniques are studied, for Dynamical Recurrent Neural Networks. The performance...
Download Results (CSV)