The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

On the 1/2 Problem of Besicovitch: quasi-arcs do not contain sharp saw-teeth.

Hany M. Farag — 2002

Revista Matemática Iberoamericana

In this paper we give an alternative proof of our recent result that totally unrectifiable 1-sets which satisfy a measure-theoretic flatness condition at almost every point and sufficiently small scales, satisfy Besicovitch's 1/2-Conjecture which states that the lower spherical density for totally unrectifiable 1-sets should be bounded above by 1/2 at almost every point. This is in contrast to rectifiable 1-sets which actually possess a density equal to unity at almost every point. Our present method...

The Riesz kernels do not give rise to higher dimensional analogues of the Menger-Melnikov curvature.

Hany M. Farag — 1999

Publicacions Matemàtiques

Ever since the discovery of the connection between the Menger-Melnikov curvature and the Cauchy kernel in the L norm, and its impressive utility in the analytic capacity problem, higher dimensional analogues have been coveted. The lesson from 1-sets was that any such (nontrivial, nonnegative) expression, using the Riesz kernels for m-sets in R, even in any L norm (k ∈ N), would probably carry nontrivial information on whether the boundedness of these kernels in the appropriate norm implies rectifiability...

On an optimal control problem for a quasilinear parabolic equation

S. FaragM. Farag — 2000

Applicationes Mathematicae

An optimal control problem governed by a quasilinear parabolic equation with additional constraints is investigated. The optimal control problem is converted to an optimization problem which is solved using a penalty function technique. The existence and uniqueness theorems are investigated. The derivation of formulae for the gradient of the modified function is explainedby solving the adjoint problem.

Page 1

Download Results (CSV)