The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

On systems of imprimitivity on locally compact abelian groups with dense actions

J. MathewM. G. Nadkarni — 1978

Annales de l'institut Fourier

Consider the four pairs of groups ( Γ , R ) , ( Γ / Γ 0 , R / Γ 0 ) , ( K S , P ) and ( S , B ) , where Γ , R are locally compact second countable abelian groups, Γ is a dense subgroup of R with inclusion map from Γ to R continuous; Γ 0 Γ R is a closed subgroup of R ; S , B are the duals of R and Γ respectively, and K is the annihilator of Γ 0 in B . Let the first co-ordinate of each pair act on the second by translation. We connect, by a commutative diagram, the systems of imprimitivity which arise in a natural fashion on each pair, starting with a system...

Sets with doubleton sections, good sets and ergodic theory

A. KłopotowskiM. G. NadkarniH. SarbadhikariS. M. Srivastava — 2002

Fundamenta Mathematicae

A Borel subset of the unit square whose vertical and horizontal sections are two-point sets admits a natural group action. We exploit this to discuss some questions about Borel subsets of the unit square on which every function is a sum of functions of the coordinates. Connection with probability measures with prescribed marginals and some function algebra questions is discussed.

Page 1

Download Results (CSV)