The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let A be a closed linear operator acting in a separable Hilbert space. Denote by co(A) the closed convex hull of the spectrum of A. An estimate for the norm of f(A) is obtained under the following conditions: f is a holomorphic function in a neighbourhood of co(A), and for some integer p the operator is Hilbert-Schmidt. The estimate improves one by I. Gelfand and G. Shilov.
The analytical description of Φ-functions for two convex polytopes is investigated. These Φ-functions can be used for mathematical modelling of packing problems in the three-dimensional space. Only translations of the polytopes are considered. The approach consists of two stages. First the 0-level surface of a Φ-function is constructed, and secondly, the surface is extended to get the Φ-function. The method for constructing the 0-level surface is described in detail.
Download Results (CSV)