The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study combinatorial properties of the partial order (Dense(ℚ),⊆). To do that we introduce cardinal invariants , , , , , describing properties of Dense(ℚ). These invariants satisfy ≤ ℚ ≤ ℚ ≤ ℚ ≤ ℚ ≤ ℚℚ = pℚ = tℚ = iℚ > hℚ > rnon(M)=min||: ⊆ Dense(R) ∧ (∀I ∈ nwd(R))(∃D ∈ )(I ∩ D = ∅) and cof(M) = min||: ⊆ Dense(ℚ) ∧ (∀I ∈ nwd)(∃D ∈ )(I ∩ = ∅).
We use these facts to show that cof(M) ≤ i, which improves a result of S. Shelah.
We answer several questions of D. Monk by showing that every maximal family of pairwise incomparable elements of 𝒫(ω)/fin has size continuum, while it is consistent with the negation of the Continuum Hypothesis that there are maximal subtrees of both 𝒫(ω) and 𝒫(ω)/fin of size ω₁.
Given a Boolean algebra 𝔹 and an embedding e:𝔹 → 𝓟(ℕ)/fin we consider the possibility of extending each or some automorphism of 𝔹 to the whole 𝓟(ℕ)/fin. Among other things, we show, assuming CH, that for a wide class of Boolean algebras there are embeddings for which no non-trivial automorphism can be extended.
Download Results (CSV)