Inequalities for surface integrals of non-negative subharmonic functions
Let denote the class of positive harmonic functions on a bounded domain in . Let be a sphere contained in , and let denote the -dimensional measure. We give a condition on which guarantees that there exists a constant , depending only on and , such that for every . If this inequality holds for every such , then it also holds for a large class of non-negative subharmonic functions. For certain types of domains explicit values for are given. In particular the classical value...