The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let X be a space. A space Y is called an extension of X if Y contains X as a dense subspace. For an extension Y of X the subspace Y∖X of Y is called the remainder of Y. Two extensions of X are said to be equivalent if there is a homeomorphism between them which fixes X pointwise. For two (equivalence classes of) extensions Y and Y' of X let Y ≤ Y' if there is a continuous mapping of Y' into Y which fixes X pointwise. Let 𝓟 be a topological property. An extension Y of X is called a 𝓟-extension...
We prove a commutative Gelfand-Naimark type theorem, by showing that the set of continuous bounded (real or complex valued) functions with separable support on a locally separable metrizable space X (provided with the supremum norm) is a Banach algebra, isometrically isomorphic to C₀(Y) for some unique (up to homeomorphism) locally compact Hausdorff space Y. The space Y, which we explicitly construct as a subspace of the Stone-Čech compactification of X, is countably compact, and if X is non-separable,...
Download Results (CSV)