Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Compactification-like extensions

M. R. Koushesh — 2011

Let X be a space. A space Y is called an extension of X if Y contains X as a dense subspace. For an extension Y of X the subspace Y∖X of Y is called the remainder of Y. Two extensions of X are said to be equivalent if there is a homeomorphism between them which fixes X pointwise. For two (equivalence classes of) extensions Y and Y' of X let Y ≤ Y' if there is a continuous mapping of Y' into Y which fixes X pointwise. Let 𝓟 be a topological property. An extension Y of X is called a 𝓟-extension...

The Banach algebra of continuous bounded functions with separable support

M. R. Koushesh — 2012

Studia Mathematica

We prove a commutative Gelfand-Naimark type theorem, by showing that the set C s ( X ) of continuous bounded (real or complex valued) functions with separable support on a locally separable metrizable space X (provided with the supremum norm) is a Banach algebra, isometrically isomorphic to C₀(Y) for some unique (up to homeomorphism) locally compact Hausdorff space Y. The space Y, which we explicitly construct as a subspace of the Stone-Čech compactification of X, is countably compact, and if X is non-separable,...

Page 1

Download Results (CSV)