Curved thin domains and parabolic equations
Consider the family uₜ = Δu + G(u), t > 0, , , t > 0, , of semilinear Neumann boundary value problems, where, for ε > 0 small, the set is a thin domain in , possibly with holes, which collapses, as ε → 0⁺, onto a (curved) k-dimensional submanifold of . If G is dissipative, then equation has a global attractor . We identify a “limit” equation for the family , prove convergence of trajectories and establish an upper semicontinuity result for the family as ε → 0⁺.