The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

An observation on Krull and derived dimensions of some topological lattices

M. RostamiIlda I. Rodrigues — 2011

Archivum Mathematicum

Let ( L , ) , be an algebraic lattice. It is well-known that ( L , ) with its topological structure is topologically scattered if and only if ( L , ) is ordered scattered with respect to its algebraic structure. In this note we prove that, if L is a distributive algebraic lattice in which every element is the infimum of finitely many primes, then L has Krull-dimension if and only if L has derived dimension. We also prove the same result for error L , the set of all prime elements of L . Hence the dimensions on the lattice...

Page 1

Download Results (CSV)