The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We investigate curvature properties of hypersurfaces in semi-Riemannian spaces of constant curvature with the minimal polynomial of the second fundamental tensor of second degree. We present suitable examples of hypersurfaces.
We construct a class of nonsemisymmetric Ricci-semisymmetric warped products. Some manifolds of this class can be locally realized as hypersurfaces of a semi-Euclidean space , n ≥ 5.
We investigate semi-Riemannian manifolds with pseudosymmetric Weyl curvature tensor satisfying some additional condition imposed on their curvature tensor. Among other things we prove that the so-called Roter type equation holds on such manifolds. We present applications of our results to hypersurfaces in semi-Riemannian space forms, as well as to 4-dimensional warped products.
Solutions of the P. J. Ryan problem as well as investigations of curvature properties of Cartan hypersurfaces and Ricci-pseudosymmetric hypersurfaces lead to curvature identities holding on every hypersurface M isometrically immersed in a semi-Riemannian space form. These identities, under some assumptions, give rises to new generalized Einstein metric conditions on M. We investigate hypersurfaces satisfying such curvature conditions.
In this paper we present a review of recent results on semi-Riemannian manifolds satisfying curvature conditions of pseudosymmetry type.
Download Results (CSV)